
1

Web Navigation Architectures
Browser, Application, Server or Embedded?

Carsten Sørensen
c.sorensen@lse.ac.uk

London School of Economics and Political Science. United Kingdom &
Laboratorium. Trollhättan/Uddevalla University. Sweden

Daniel Macklin
Tony Beaumont

a.j.beaumont@aston.ac.uc
Computer Science, Aston University. United Kingdom

Abstract
The World Wide Web is increasingly becoming the preferred repository of
information. The strength of this information infrastructure is also its weakness.
Faced with the chaos of millions of places to go and thousands of places to
remember having bee, the thousands of new Web users who join every day, need a
helping hand. The aim of this paper is, by way of an experiment designing a
prototype system, to conceptualise the architecture components of Web navigation
support. The prototype supports the ranking of bookmarks based on monitoring
user behaviour and recording user ranking. The BASE framework is, based on a
survey of existing systems, suggested as a means of understanding the pragmatic
technological choices. The framework is applied in characterising a number of
current Web navigation technologies.

Keywords: Web navigation support, system architecture

1. Introduction

The World Wide Web (the Web) is exploding. The immense success of the Web as a
repository of information on literally everything can not be disputed. The adoption rate of
the underlying technology, the HTTP servers, increased from 200 in October 1993, over
1500 in June 1994 to an estimated more than two million in 1997 (Darken, 1998). The
comparison with the introduction of Gutenberg’s printing press, wireless radio and even
the mighty television seems infinitely slow in comparison. Every day thousands of people
connect to the Internet (the Net). In the United Kingdom it is estimated a growth of
10.000 new Internet users every day (The Observer, April 4, 1999). According to Wired
(April 1999, p.70), 40% of new adult Net users in the USA have never attended college
and 23% have incomes below $30.000 pr. year. Newcomers to the Net are in other words
ordinary consumers, and not any longer only computer professionals and enthusiasts.
Their primary windows to this information infrastructure are Email and the Web.
Increasingly the infrastructure will be applied in a broad range of areas. Consumers will
increasingly turn to the Net when they seek information, when they buy goods and
services, and when they wish to connect with others. We can look at Finland to get an
idea about where it is all going, where 10% the population use the Internet weekly to pay
bills or buy services. Only a handful of other countries has 10% of their population

2

connecting to the Net on a weekly basis at all (Lyytinen and Goodman, 1999). The Web
has been the main driving factors in the diffusion of Internet technology to businesses and
consumers. It provides the advantages of hyper-linked documents easily accessible
through Web browsers. These Web browsers, which in the case of the two market leaders
Netscape Navigator and Microsoft Internet Explorer, also provide access to electronic
mail and to electronic bulletin boards. The Web browsers and a handful of Web
directories and search engines, increasingly coined “Web Portals”, thus presents the user
with a “one stop” solution for accessing the infrastructure.

As argued by several, one of the main strengths of the Web, its lack of overall
structure of the interconnected hypertexts, is also one of the main problems which must
be addressed (Lieberman, 1995; Tauscher and Greenberg, 1997a; Tauscher and
Greenberg, 1997b; Darken, 1998; Sørensen, 1998). Nielsen (1999) argues that based on
the estimated growth in number of Web sites from 4 million early 1999 to around 200
million sites during 2003, we are facing problems in several areas. Nielsen, primarily
concerned with the usability of the Web, argues that the explosive growth of Web sites
will impose a huge challenge for the design of sites that can easily be accessed by
everyone from everywhere. This involves adhering at least to basic principles for how to
design Web sites that are easy to navigate. It also involves designing client software
supporting navigation and visualisation of Web sites, despite their usability condition
(Nielsen, 1999).

A majority of the research efforts in the area of Web navigation reflects issues
related to searching for new Web resources. A just as important and related issue
concerns the problem of maintaining repositories of up-to-date relevant indexes to the
Web, once they have been located. For the casual and curious Web navigator, this will
perhaps not be a main problem in the short term. The situation is, however, different for
people who in their daily work use the Web intensively as a source for information and
news. Once they over a long period have found out where they want to go, they will
increasingly experience problems determining where they have been, and which of the
places they have been are worth visiting again. Most users will only use the support
provided by the Web browser they are using, which in reality only is the very expensive
but structured bookmark facility and the unstructured but cheap history log (Sørensen,
1998). As argued by Nielsen (1999), the Web browser, although suited for navigation of a
Web containing a few hundred million pages or less. With the present explosive growth,
the current Web navigation technology is not adequate. The pull-down menu is, for
example, an extremely inadequate means for managing bookmarks, and there must be
better support for pruning bookmarks based on user behaviour (Nielsen, 1999).

The aim of this paper is to explore the technological choices involved in
providing support for Web navigation. More specifically, the architecture of navigation
support is investigated with a view not only to the use of the technology but also the
overhead of installing it. Even though the majority of Web navigators primarily use a
combination of web browser search engine, and bookmark file, a more sophisticated need
will emerge. This need will be driven by the explosive growth of the world of links
navigated.

Navigation support functionality can be implemented as one of a number of
technical solutions, for example as a set of Perl scripts, a Web browser plug-in, a stand-
alone application, a Java client-server solution, a Web-site server service. Each of these
solutions will have distinct consequences for the end-user in terms of installation and use.
Given that the technology increasingly will be in the hands of consumers and not
professionals in organisations with available support staff, we must strive to understand
the consequences the choice of architecture has on the use and maintenance of the
technology. No research has so far looked at the relationships between the choice of

3

navigation support architecture and navigation activities. In order to provide rich data on
the systems architecture issues involved in Web navigation support, we developed a
prototype system. The Java client-server system supports semi-automatic ranking of
bookmarks based on recorded user behaviour and on explicit user-ranking of sites. The
experiment resulted in the BASE framework characterising the basic architecture
components of Web navigation support as a combination of the four main elements:

(1) Browser: Part of or the entire Web navigation support functionality is
provided as an integral part of the Web browser

(2) Application: Part of or the entire functionality is provided in a separate
application which is installed on the client computer

(3) Server: Part of or the entire functionality resides in a server. Access to this
functionality can either be through a Web page or by a client application

(4) Embedded. Part of or the entire functionality is embedded in or part of a Web
page downloaded, such as a Web browser plug-in, a JavaScript panel, or a
Java applet

The following section presents a conceptual framework characterising the
functional elements of Web navigation and discusses related disciplines. Section 3
presents and discusses the main issues encountered in an experiment designing a semi-
automatic bookmark management system. Section 4 synthesises the findings from the
experiment in a framework characterising the architectural elements of Web navigation
support. Section 5 discusses different types of Web navigation technologies using the
BASE framework and the Web navigation model. Section 5 concludes the paper.

2. Web Navigation

Supporting the navigation of ill-structured hypertext documents is a very complex task,
especially if the ambition is to obtain a high degree of automation. This section
characterises Web navigation in terms of the functional components and the challenges
for providing computer support. This will provide an overview of the possible elements
contributing to the complexity of the task.

Conceptualising Web navigation

In order to analyse how current and future Web navigation support match the activities of
an individual navigating the Web, we need a set of basic concepts. The Web Navigation
Model presented below provides an analytical model characterising the functional
properties of Web navigation, i.e., characterising what actually goes on when a person
navigates the Web (Sørensen, 1998). The aim of the framework presented below is to
pragmatically characterise the functional elements. It is not the purpose, from a cognitive
perspective, to precisely describe what goes on inside the head of the person navigating.
Nor is it the purpose to focus on one particular allocation of functionality between human
and computer in supporting navigation. Hence, the simple, yet powerful analytical model
characterising the activities involved in navigating the Web as the following four
functional components (Figure 1). Each function is exemplified by the use of an ordinary
Web browser in conjunction with a search engine.

Declaring: Defining or refining the declarative parts of the search and navigation
profile. The user declares the search profile simply by entering a specific URL in the Web
browser. The URL might be retrieved from the bookmark file or from the history log of

4

recent Web resources visited. In both cases the management of the declaration history
and context is left to the user.

Searching: Exploratory investigation of possible Web pages to download based
on the declared profile. Once the user has used a search engine to locate a (large) number
of URLs, he or she can choose a number of URLs to visit. Once a particular URL is
visited, it might, in turn, lead to new lines of inquiry etc. etc. It will be entirely up to the
user to perform the navigation. The browser will only download the hypertext pages.

Exploring: Actively choosing a particular path to investigate and analyse. Once
the user have used a search engine to locate a (large) number of URLs, he or she can
choose a number of URLs to visit. Once a particular URL is visited, it might, in turn, lead
to new lines of inquiry etc. etc. It will be entirely up to the user to perform the navigation.
The browser will only download the hypertext pages.

Evaluating: Assessing the quality of the information retrieved in relation to the
existing body of knowledge represented by discarding undesirable, and systematising
desirable information. Presented with the contents of a given page, the user then decides
whether the information on the page is of interest and if any of the links ought to be
pursued.

The outer arrows in the model (Figure 1) denote the main cycle, and the inner
arrows represent the possibility to cut out one or more activities in a particular cycle. The
allocation of functionality among human and computer is at this stage not determined for
the activities. Hence, the model equally describes the manual use of a conventional Web
browser and a more automated navigation scenario where advanced functionality replaces
some manual activities. It is important to note that at any time in the navigation process
the user may leave behind traces for subsequent inspection. These can for example be a
profile declaring the user’s interest, the recording of the navigation history, or the few
selected bookmarks saved for later reference.

Figure 1: Web Navigation Model characterising the activities involved in Web
navigation (Sørensen, 1998).

Understanding Navigation

A number of basic disciplines and techniques provide input for designing computer
support for Web navigation. The relative lack of structure of the Web implies that part of
the problem relates to information retrieval and filtering. In cases of more structured data,

5

it may be feasible to apply linear statistical techniques for data-mining, which is quite
difficult on the Web (Etzioni, 1996). Oard (1997) characterises the issues in information
retrieval and filtering as a combination of the change rates of the information need and
the information source. In general, information retrieval and information filtering can be
viewed as two sides of the same problem (Belkin and Croft, 1992). It is generally
considered impossible to tackle situations where there both are a high information need
and information source change rate. Since the Web is characterised by a high source
change rate, support for information filtering must assume relative low information need
change rate. This has also been termed “persistence of interest” (Lieberman, 1995), and
relates to the assumption that the user has a consistent interest over a period of time. In
order to represent this interest, the system may employ techniques from the area of user
modelling (Allen, 1990).

As argued by Oard (1997); “Information filtering can be viewed as an application
of user modelling techniques to facilitate information detection in dynamic
environments.” In order to filter and rank the resources found in a dynamic text corpus,
the interest of the user can be applied as a filter. This relates to the field of user modelling
where the challenge is to represent user preferences and record user behaviour. This
information is subsequently used to support the navigation process. Precision and recall,
the two traditional concepts from information retrieval, are not suited to describe
information retrieval on the Web, since the concepts are based on the notion of a
complete set of documents (Nielsen, 1999). The Web will in most cases contain far more
relevant documents than anyone would have the time to inspect.

Oard (1997) characterises three fundamental information-seeking tasks:
Collection, Detection and Display. Comparing these tasks to the functional model for
Web navigation above, the tasks are orthogonal to the functions. The typical search
engine will, based on a search profile, collect, detect and display Web resources as a
ranked and filtered list collected from the search engine’s index of a large proportion of
the Web. Similarly, from the point of view of a user obtaining a list of Web resources
from the search engine, the list represent resources collected. The exploration and
evaluation of these represents the detection task. Saving the desired ones as bookmarks
denotes the display task. Nielsen (1999) argues for the need for functionality supporting:

(1) Aggregation -showing a single unit that represents a collection of smaller ones
(2) Summarisation - representing a large amount of information with a smaller

one
(3) Filtering by eliminating unwanted information; and
(4) Elision which is example-based representation.
Since the Web is a distributed and inter-linked global networks, it is cumbersome

if not impossible to inspect and explore a substantial amount of it without the use of
semi-automatic means. Software agents have become increasingly important as a
technique providing semi-automatic access to the Web (Maes, 1994; Lieberman, 1995;
Krulwich, 1997; Maglio and Barrett, 1997; Fagrell and Ljungstrand, 1998; Joshi and
Singh, 1999). Web agents, which also are referred to as ‘robots’, ‘wanderers’, ‘crawlers’,
or ‘spiders’, are programs that automatically traverse the Web's hypertext structure by
retrieving a document, and recursively retrieving all documents referenced. The search
engines to collect data for indexing also use web robots. A Web browser is not in itself a
robot since it is operated by a human user and does not automatically retrieve referenced
documents. The agents support some of the navigation tasks to be conducted semi-
automatically, and a number of Web agent systems are available (see for example
www.botspot.com). Schubert, Zarnekow and Brenner (1998) suggest a three-dimensional
framework for classifying software agents in general. They suggest the dimensions:

6

number of agents (single agent or multi-agent systems); intelligence (simple or complex);
and mobility (static or mobile).

Often people will not only seek resources on the Web, but also ask others for
help. This has been formalised and supported in a number of systems and prototypes.
Mutual recommender systems supports users in obtaining suggestions based on either the
explicit preferences of other users or from the analysis of recorded behaviour of other
users (Balabanovic and Shoham, 1997; Oard, 1997; Terven et al., 1997; Fagrell and
Ljungstrand, 1998).

When looking at this complex picture of research fields and computer technology,
it is clear that they offer a potential when addressing the complex issues of supporting the
process of making sense of and navigating a chaotic and unstructured world. However, it
is also clear that none of the individual research fields or areas of technology single-
handedly can address the complex issues we are facing. It seems that people within the
area of autonomous software agents tend to overemphasise the potential of that particular
technology without addressing some of the potential drawbacks (Schneiderman and
Maes, 1997; Joshi and Singh, 1999). Similarly, areas such as information retrieval,
information filtering, user modelling, artificial intelligence, and distributed networks can
all provide important lessons for the study of Web navigation support. A focus on the
each of the fields as such instead of on the problem at hand, i.e., investigating the support
for people who experience problems of managing their interaction with the Web, carries
with it the danger of digress.

Although relatively simple, the Web navigation model presented above, marks a
pragmatic starting point acknowledging the most important issues in the near future. It
also provide a simple framework from which to understand the need for input from
various disciplines by in each of the four functional elements discussing the allocation of
functionality between the human and the computer. Declaring a search can, for example
be supported by providing a profile of the user’s interest, i.e., user modelling. This profile
can either be derived from observing user behaviour or by explicit stipulation. Software
agent technology can in conjunction with a user model be applied to semi-automatically
traverse sets of Web resources and provide filtering of the outcome in order to support
both the exploration and evaluation of Web resources. Supporting Web navigation is, in
other words, not about sticking to a well defined discipline but about providing the right
mix which both address the need for support without requiring extensive overhead for
installation and training.

3. The Java Bookmark System

This section documents an experiment with the purpose of designing semi-automatic
support for the exploration and evaluation of Web resources. The purpose of the
experiment is to provide rich data on the architectural issues involved in designing Web
navigation support. In the development of a prototype we have taken up one of the
challenges promoted by Nielsen (1999), to let bookmarks reflect the history of the users
navigation behaviour and the users explicit preferences. The prototype presented in this
section supports the exploration and evaluation of Web resources by semi-automatic re-
ordering of bookmarks according to the intensity of use and the user’s indication of
importance. One of the simplest, yet most widely used methods of recording interest from
the Web is the humble bookmark file. The main reasons for its popularity are threefold.
Firstly, it is a built in feature of almost all Web browsers, and hence readily available to
anyone connected to the Web. Secondly it is incredibly easy to use. Finally the concept of

7

book marking is intuitive to everyone. However despite these advantages, various
research studies have pointed out that the standard bookmark file is inadequate at
recording Web interest, and hence could be improved to help aid re-visitation (Tauscher
and Greenberg, 1997b; Nielsen, 1999).

One of the main reasons for this inadequacy is the book mark file cannot be easily
changed to keep up with the dynamic, constantly changing nature of the Web, which
means that resources come into existence, are modified, and eventually may disappear.
Another important reason is that the bookmark file cannot react to subtle changes in
users’ persistence of interest. These problems lead to users having to spend inordinate
amounts of time amending and pruning their bookmarks. Unfortunately for most Web
users the time involved is too great, and the bookmark file descends into a jumbled mess
of URLs, which according to Taucher and Greenberg (1997b; 1997a) can be seen to be
almost as inefficient as not having bookmarks at all. The aim was, therefore, to develop a
system improving the basic bookmark file without burdening the user with greater
complexity, functionality or computational effort.

The initial idea

The first stage in the project was to identify how to increase the flexibility of the
bookmark file without compromising the factors that lead to the popularity of bookmarks.
After initial investigations, the most promising solution was to develop functionality to
re-order the users bookmarks in such a way that the URLs the user felt to be most
Important and used the most could be found towards the top of the bookmark file. The
resulting effect could be seen as analogous to conducting a bubble sort of the URLs in the
users’ bookmark file according to the users’ persistence of interest. It was believed that
by following this strategy numerous advantages could be gained. Firstly the basic model
behind the book marking system could be left unchanged, in that when the user found an
interesting resource they would add it to the bookmark file. Secondly the idea of finding
the most important information at the top of a list, and the least at the bottom is as
intuitive as the idea of book marking itself. Thirdly a system such as this would build in
some flexibility into the bookmark file, to help it more accurately model a users’
persistence of interest. Fourthly an re-ordering algorithm could be constructed that lead to
a gradual, rather than sudden change in the order of the bookmark file, which could
prevent the user becoming confused as to the location of their bookmarks.

Re-ordering bookmarks

With the model of operation set, a suitable re-ordering algorithm that took into account
both persistence of interest and the dynamic nature of the Web, while not intruding too
much into the basic operation of the bookmark file had to be designed. The obvious
solution to this problem was to use a two-stage approach. Initially the bookmark would
be arranged solely by how important a user felt a resource to be. This functionality was
incorporated by allowing the user to give each bookmark an information importance
score ranging from 0 – 100. The second stage would be to monitor how the user used the
bookmark resources by collecting and storing various statistics. This information would
be used to amend the initial information rating score, and the bookmark would be re-
ordered. The best way to describe why this decision was made is to walk through a
possible scenario of bookmark usage that we came up with. The scenario shows how the
automatic re-ordering bookmark can save upon the time that a user would need to
properly re-arrange their bookmark file. Initially a user finds two Web pages of different

8

content, but similar topic. At the time, the user rates the first page very highly, giving it a
score of 100, and the second one less highly giving it a score of 50. After the information
rating, the first page is found at the top of the bookmark, while the second is found
towards the middle.

After a period of several months the users job roll changes slightly, and the user
finds him/herself using the second Web page more than the first. Slowly as time
continues, the information score associated with the first Web page is reduced, and that
associated with the second is increased. As the bookmark is re-ordered by user
importance score, this leads to the first bookmark to slowly start descending through the
bookmark file, while the second URL starts to ascend. After another couple of weeks, the
second URL moves to the top of the bookmark file, whilst the second middles out. A
couple of months later, the first book marked URL is completely removed from the Web,
and thus the user no longer is able to visit it at all. In this situation the system quickly
ascertains that the bookmark is no longer in use, so is rapidly moved to the bottom of the
bookmark file for deletion. From the description given, it can be seen that the system can
work in three possible modes. The first mode would be complete manual organisation,
where the user simply rates each of the pages, and that order is maintained. The second
mode would be semi-automatic, where the user and the system work co-operatively to
maintain the book mark file. Here the user would initially rate a resource, and over time,
the system would decide whether or not that rating was justified, modifying the ‘user
importance’ score in a positive or negative direction as appropriate (N.B. the user has
overriding control at all times). The third and final mode would be completely automatic.
This mode would be entered if the user does not rate any of the URLs within the
bookmark file. Here the system would completely automatically amend the user-
importance scores and hence the book mark structure, organising the book mark file
solely by what it judged to be most important.

Design Rationale

With the basic rules set down, a prototype was constructed to test their validity. The
prototype was constructed in such a way as to put a minimum burden on the user, in
terms of ease of use, ease of installation, and user interference. In order to fulfil these
requirements many difficult design decisions had to be made, that all turned out to be
heavily interwoven. The first and perhaps most important design decision taken however
was, application, applet, or plug-in? The most important factor when designing the
system was user acceptance. To achieve this aim, the system had to fit in, or appear to be
a part of what the user already is familiar with. In this context, this meant that the system
must run within the users actual Web browsing environment. The next most important
factor was ease of installation. Even if the software were incredibly easy to use, no one
would use it if it were too complex to install.

This left three options. The first and most complex option was to add extra
functionality to the Web browsing software itself. Until recently this had been completely
ruled out, as it has only been possible to get the source code for the NSCA Mosaic
browser, that is seen as technically obsolete. However recently Netscape has published
the source code for its popular Navigator Browser, allowing external developers to bolt
on additional functionality (www.mozilla.org). The second option was to build a
Netscape / Explorer plug-in. A plug-in is a piece of software designed to seamlessly
integrate into a Netscape Web Browser. Again this is quite a complex solution to the
problem, but at least the plug-in can be seen in its own right, without having to fully
understand the intimate workings of the browser. The third option that was considered

9

was to build the system as a Java applet run within the Web browser. Although this
would not technically be as integrated into the browsing environment as the other two
possibilities, with careful design and programming the applet could be made to appear as
part of the Web browser.

After evaluating the alternatives, the application, and plug-in were soon dropped.
The Web is built upon an IP backbone. The IP protocol has been designed with platform
independence in mind, thus allowing all computers with a suitable implementation to talk
to each other regardless of machine type, or operating system used. Using this
technology, the Web has been built using a mismatch of hardware, all running different
operating systems. The multi-platform nature of the Web suggests that any software used
along side it must be able to seamlessly run across many platforms. On top of this,
installing and upgrading Web browsers and plug-ins is very time consuming, and can be
very complex, for example upgrading to a new Web browser, whilst retaining all of your
plug-ins can be a hazardous affair to even the most computer literate people. Whilst
upgrading a customised Web browser, would be fraught with difficulty. Barring these
complexities in mind, the most rational choice seemed to be to build a Java applet, which
would be completely platform independent, and require no-instillation, or complex
upgrades. All that would have to be done is to publish the applet on a set Web page, and
anyone could use it.

Interface

All of the preparation work led to a system with an interface (See Figure 2). Here the
bookmark file is implemented as an ordered list of URL buttons. The interface is
implemented as a separate frame, which opens outside the main browser window. When
the user clicks on a URL button, that URL is loaded in the main browser window, and
usage statistics are updated. The user rates the Web page though the score box next to the
URL button. The user is able to override the current score at any given time, to manually
move the bookmark within the file. It is this functionality which can enable the system to
run in a semi-automatic mode.

Figure 2: The Java Bookmark System bookmark list.

10

In order to re-order the bookmark, along with the users perception of how
important a URL was several other metrics were recorded and stored in the database.
These metrics included the number of times that the page had been accessed, the time at
which the last page was accessed, and the total time that had been spent browsing the
URL. The metrics were used to assign a score to each of the URLs within the bookmark.
When the bookmark was to be refreshed, the standard deviation of all of the scores was
calculated. Then the score associated with each URL was passed through a z scores
algorithm, which calculated how far away the score was from the standard deviation (in
both a positive or negative direction). The result of this calculation was added to the user
ratings score, which were re-ordered using a straight insertion sort. Once the database had
been re-arranged, then a new bookmark Web page was created, and the GUI re-drawn.

Architectural issues

We have already limited ourselves to constructing the system as an applet in Java, so
what are the options? Well in fact there are only two, both of which require distributed
computing. The first option would be to program the system using a Web server and CGI
script written in Perl. Using the Java programming language it is possible to program an
interface to a CGI system. Using this interface messages could be sent from the Client to
a Web server, where they are processed by the Perl script. Whilst this solution would
allow you to write a program with the necessary functionality, it would be hard to
program the necessary level of user interaction. The second option would be to write a
true Client / Server application. The Client could be written in any Web language such as
Active X or Java, whilst the Server could be written in any language at all, which
supported sockets.

The Java Bookmark system was designed using a client server architecture, with
both the client and server written in Java. One of the most pressing arguments for the
Client Server architecture was minimisation of impact upon the user. Although
maintenance of bookmark files is a time consuming process, it is not processor intensive.
Even when using modest hardware, the user should be able to add to or amend their
bookmark files without noticing any interruption to other ongoing computing services
currently executing. For the Java Bookmark system to be excepted by current users of
Web browsers, the new software will have to offer a minimum performance overhead
over that of the traditional bookmark. Even with great care taken to ensure
implementation efficiency, it is very likely that performance will be impacted. It is
therefore necessary to minimise this impact on the users Web browsing experience.

The client server architecture offers a novel way to help solve this problem by
running processor intensive tasks on a remote server, which has been specially optimised
for that purpose. Thus in principle the division of labour between client and server is such
that the client is used merely for user interface tasks, and information flow control. While
the server carries out the bulk of the processing. This process can be made all the more
efficient by using the Java RMI architecture, which allows procedures to be called on the
remote server from the client.

In this case the client program was responsible for building the GUI from a
standard Web page; displaying the URL to be viewed in the main browser window, and
opening an IP connection to the server, such that the browsing information could be
saved before the system shut down. It is interesting to note however that the client only
required the functionality to send data to the server. This was because the client was
constructed in such a way as to build its interface from parameters written to a Web page.
When the interface was to be refreshed, the server simply replaced the current Client Web

11

page, and the GUI was redrawn. In a way this meant that the software was upgraded each
time it was refreshed, and goes to show how easy upgrading the whole of the software
could be. On the other hand the server was responsible for decoding messages from the
client; saving and querying data from the database; re-ordering the bookmarks, and
generating the standard Web page from which the bookmark GUI was created.

Another more subtle reason for using the Client Server architecture was brought
about by the security model that prevents applets from accessing local computing
resources. Applets written using the 1.02 and 1.1.x implementations of the Java
programming language are subject to stringent security restrictions. The most notable of
these is that the applet is not allowed to read, or write to the local file system; and can
only make an IP connection to the Web server that it was downloaded from. These
restrictions make programming complex applets troublesome, but are there to prevent
rogue applets reading from or writing to the file system, or making uncontrolled IP
connections. It is obvious that the book mark system that has been described will need to
have some kind of persistence. The only way to provide this persistence is to write a
server as a stand-alone application running on the machine where the applet resides. This
server can then open up other IP connections under the control of the client to access any
other resource via the TCP/IP protocol. To provide the necessary persistence, the
intelligent book marking system used a Java server to connect to an Oracle Database via a
JDBC interface. The JDBC interface is a Java API coupled with database specific drivers
that allows a Java program to directly connect to a database, and update or retrieve
information by passing simple SQL. As the database interface and commands were
executed via the server (a Java application) this meant that the database could reside on a
remote machine from the Web Server. Figure 3 illustrate the three-tier architecture.

D a ta D ata

C lie nt -
T ier 1

Se rv ice
Ap pl ic at io n - T h e
Intel lige nt Bo ok

M a rk S e rver

Da tab ase
In stan ce - Th e
JDB C In terface

In te llig e nt B o ok M a rk
S yste m T ie r 2

JD B C D ata b ase In s tan ce
T ier 3

Figure 3: The Java Bookmark System architecture

One of the main advantages of the intelligent bookmark system is that it requires
no user installation. The server would be set up on the Web by a qualified technician, so
that all the user will have to do to get the system working is to locate the desired Web
page. As all the user interfaces are applets, they are automatically downloaded and
instantiated. The other main advantage to this is that the system can easily be upgraded.
Traditionally upgrading software is a very expensive and time-consuming task. Here all
that needs to be done to upgrade everyone’s system is to update the software on the
central server. Next time the user visits the Web page, the latest version will

12

automatically be downloaded. The main constraint imposed on the user is that the server
is proprietary. It would be difficult for a user to export information from the server, or
link (collaborate) the activities of this server, with any other server that they are using.
The main reason for this constraint, is the same as with many systems, in that the system
was programmed with its own functionality in mind, rather than connectivity. However,
if many users used the system then a central pool of bookmark data would be created.
This data could be used to pool resources for future research.

4. The BASE Framework

What were the basic choices we were faced with in the design of the semi-automatic
bookmark management system? Inspiration could be drawn from state-of-the-art
computer science frameworks characterising computer application architectures.
However, this would lead to emphasising technical issues only, and not issues related to
the installation and use of the technology. Therefore, the following suggest a framework
characterising the basic choices for providing Web navigation support, based on
recognition of issues concerning the installation and use of the technology. The
framework has emerged from considerations when designing the prototype. The BASE
framework (see Table 1) classifies Web navigation support according to how it is
provided, i.e., support built into the Web browser, a separate application, a server facility,
or embedded into a Web page. In the following each of the four categories are discussed
in detail. The four categories represent an analytical distinction of possible components
since many systems can be characterised as a combination of the four types of elements.

BASE Web Navigation Architecture Components
Browser Part of or the entire Web navigation support functionality is provided

as an integral part of the Web browser
Application Part of or the entire functionality is provided in a separate application

which is installed on the client computer
Server Part of or the entire functionality resides in a server. Access to this

functionality can either be through a Web page or by a client
application

Embedded Part of or the entire functionality is embedded in or part of a Web
page downloaded, such as browser plug-in, JavaScript panel, or Java
applet

Table 1: The BASE Web navigation architecture framework.

Browser

The Web browser, here interpreted as the code showing the contents of html pages, can
provide navigation support. Current browsers have rudimentary navigation support such
as the bookmark, and history logging facilities, backwards and forwards arrows, auto-
complete URL, and preference settings for search engine (Sørensen, 1998). However,
even more complex navigation support could be built into the browser. The release of the
source code for Netscape, browser additions could be particularly feasible (Charles,
1998). A modified browser targeted a certain community, such as stockbrokers,
journalists, marketing people, could support the search for new Web resources of interest
to this community and provide partly automatic pruning of bookmarks based on domain

13

specific filters. The advantage of this approach could be relatively easy installation and
use because the navigation support can be completely integrated into the browser.
Installing the functionality would not be any different from installing a browser, and
using it could be similar to using an ordinary browser. On the other hand if users do not
change browser frequently, this approach could have difficulties in being accepted.

Application

The navigation support functionality can also be provided as a stand-alone dedicated
application such as the bookmark management applications available. Here, the
advantage is that the user directly can identify the adopted solution to the perceived
problem of navigation the Web since functionality clearly signals its existence through
the entity and identity of the application. It can be viewed as a “software gadget”
addressing the navigation problem. A possible disadvantage with this approach is,
however, the potential demands of the user with respect to installing and maintaining the
application. Since it is not entirely integrated with the Web browser, issues of
compatibility may occur. Updating the operating system and the Web browser can
eventually lead to the need for upgrading and installing new versions of the application.
The application can provide basic support for recording the navigation history and for
managing and annotating bookmark files. It can also provide Web agent semi-automatic
functionality for accessing and downloading Web resources.

Server

The Web is primarily a client-server architecture, with the Browser clients accessing Web
servers (Huhns, 1999). A server facility can provide navigation support which otherwise
can be difficult or impossible to obtain. This can, for example, be in the form of filtering
operations that are computationally taxing and which rely on large thesauri. One of the
advantages of a server-based solution can be relative easy installation and use of the
functionality. The user may not need to install special software but can interacts with the
server through Web pages or Java Applets that automatically are downloaded to the client
computer from the server. If a large community of users use a serer-based service, the
feedback they provide can enhance the server’s filtering capability (Oard, 1997).
Maintaining the service will not be the responsibility of the individual user, but is instead
left to the providers of the service. This may still cause problems for the user, since using
the facility may require of the user to register by filling in forms. The user may also be
required to log on to the server each time, thus requiring of the user either to set the Web
browser to allow cookies with password to be stored, or alternatively to remember the
user name and password. This may seem trivial to accomplish, but with an increasing
number of user names and passwords, the management of these becomes a task in itself.
Furthermore, because most of the services available are offered on a global market, it is
unlikely that most users will be able to choose a user name that is easy to remember. A
server can provide both complex processing, recommendations based on other users, and
ease of installation and maintenance. However, in terms of performance, the server will
be a bottleneck slowing down the navigation process if it records the behaviour of a large
number of people. Obviously, increasing bandwidth and the possibility for setting up
mirror sites can alleviate this problem.

14

Embedded

The Web navigation functionality can also be implemented as embedded functionality in
terms of executable contents in Web pages, or as plug-in extensions to the Web browser.
It can be JavaScripts embedded in Web pages, or Visual Basic, Java or ActiveX
components that are downloaded automatically to the client. Extending the Web browser
by means of a plug-in offers the opportunity to provide ubiquitous support. Once
installed, the plug-in will be ready for use whenever needed. However, the disadvantage
of the plug-in is the overhead needed for installing and updating the plug-in. Maintaining
the functionality will require detailed knowledge of where the Web browser plug-ins are
located. Ensuring compatibility between evolution of browser, plug-in and operating
system can cause practical problems. Other solutions, such as Java applets or JavaScripts
offer the advantage of automatic download and installation of the required functionality
with the price of the functionality not necessarily being available instantly.

5. Assessing Technologies

How can we then apply the BASE framework in order to characterise the architectures of
Web navigation support and to discuss the installation and use of the technology? The
combination of the Web navigation and the BASE framework, for example, provides a
map of possible options. Figure 4 shows the mapping of a number of Web navigation
support systems onto the choice of architecture.

Figure 4: Mapping Web navigation activities supported onto the BASE framework.
Example systems are chosen to illustrate that some systems apply several
components.

15

The browser history log represents an automatic trace of the user exploring Web
resources. The bookmark file is the result of a manually updates list built as a result of
the user evaluating Web resources. Setting the browser preferences for a particular search
engine supports easy integration between the browser and search activities.

A host of URL manager applications are available. They generally support
evaluation of Web resources by providing a user-friendly interface to support complex
bookmark management activities. They support the user in maintaining a proprietary
database of Web resources across different Web browsers. Some of these applications
will also support automatic recording of explored Web resources.

The Web robots available generally allow the user to specify a set of URL’s to be
visited and downloaded. This supports the exploration of Web resources. Some of the
systems are either based on client-side proxy-servers containing either previously visited
Web pages or on download of Web pages anticipated based on links on pages
downloaded. Some of the more advanced applications (such as BullsEye,
www.intelliseek.com) support filtering of the results, i.e., and example of semi-automatic
evaluation based on a profile. Search engines such as Alta Vista and Hotbot, sends out
many robots indexing the Web, and provides server-side access to the index.

Alexa (www.alexa.com) is a stand-alone application that sits in an external
window to the Web browser. The application interacts with a central server. Alexa
supports search and exploration of Web resources by tracking behaviour of all Alexa
users. As a given Web site, Alexa will provide information of the typical Web sites others
visit after having been at the current site. As such it functions as a mutual recommender
system implemented as a client-server architecture where the client is a stand-alone
application. Alexa, thus, supports the search and exploration of web sites through a
client-server architecture.

Increasingly Web sites have built-in JavaScript control panels supporting
interaction with the site. Providing an instantly available index of the site supports the
user in exploring the contents. The Java Bookmark system described previously, is an
example of a system supporting declaration, search and evaluation of Web resources. It
does not as such support evaluation, since the user is required to visit Web pages, but the
combination of observed behaviour and explicit rating are used as parameters in the
automatic ranking of bookmarks according to perceived relevance. The Y2K agent
developed by Trowbridge (1999) (seen Figure 5) is an example of an architecture similar
to the Java Bookmark system. It is a client-server architecture where the server on regular
intervals indexes Web sites about the Year-2000 problem. The JavaScript client control
panels (see Figure 5) are embedded access points to the server database. The user can
specify keywords, and based on these, the Web site is rated according to the relevance.
This client-server system supports the user in declaring an interest profile that is used as a
filter supporting the process of evaluating the potential relevance of the Web site
regarding the particular interest. The strength of combining a server-side index process by
means of a Web robot with the JavaScript client is similar to the Java Bookmark System
that the end-user will be presented with a service with no additional overhead for
installation. The responsibility for maintaining the server process will reside with the
organisation providing the service.

Characterising technologies according to the process of installing and using them
(see Figure 6), we see that the URL manager application or a Web navigation robot
requires manual installation and will also require manual activities in use situations. The
user may have more sophisticated functionality available in the URL manager
application, but the user is still required to do most of the work maintaining the
bookmarks. The typical Web robot is at most semi-automatic in the sense that it will
traverse the proportion of the Web specified in a list of URLs or by automatically

16

downloading the links on the current Web page being displayed by the user’s Web
browser.

Figure 5: The Y2K Agent (Trowbridge, 1999), supporting declaration and
evaluation of pre-indexed Year-2000 Web sites.

Figure 6. Classification of navigation support systems based on distinction between
the installation and the use of the technology from the perspective of the end-user
with a Web browser.

The bookmark file, the history log and the URL auto completion functions
provided by standard Web browsers are automatically installed when the Web browser is
installed. It is here assumed that given the Web browser is by far the most common
method of accessing the Web, it does not yet make sense to treat the browser as an
optional mode of access. The Web browser de facto defines the Web for most end-users.
Using the features built-into the Web browser requires of the user to manually conduct
the navigation.

Navigation support provided through a browser plug-in such as CyberViewer
(http://www.easystreet.com/~jasonk/cyberviewer/) which automatically keeps a list of
thumb-nail pictures of pages visited, or Alexa (www.alexa.com), discussed above, both
have to be downloaded and installed by the user. However, once this task has been
completed, they will both provide the navigation support automatically. The Java
Bookmark System and the Y2K Agent are both installed automatically when the user

17

selects the server homepage. The uses of the two systems are automatic in the sense that
they automatically link the Web browser to the server. However, both systems allow the
user to perform additional configuration in order to optimise performance. Increasing use
of JavaScript control panels that interact with servers and which, based on a user-profile
can filter and present interesting links and summarise information, seems to be one of the
viable strategies for developing navigation support which is both powerful as well as easy
to install and use.

Recent developments increasingly tie the operating system, the Web browser and
Web search together. The recent court case between Microsoft and the US Department of
Justice concerns amongst others the integration of the Internet Explorer browser and the
Windows98 operating system. Similarly, the Sherlock search function on MacOS 8.5
from Apple integrates searching local disks and searching the Web. Each Web site needs
to produce a small plug-in specifying the site address and protocol. The protocol is
downloaded and becomes part of the operating system.

6. Conclusion

As argued by Nielsen, one of the main challenges facing the Web is the development of a
huge amount of Web sites by people who are not experts in developing user friendly
technology (Nielsen, 1999). Another, and subsequent, challenge is to provide the
necessary support for navigating all these Web sites once they are built. Attempting to
understand and develop the possibilities for supporting Web navigation is in some respect
a hopeless task. The incredible growth of the Web has spurred a global race for
developing advanced support. At the same time, most of the support developed is far
from penetrating the market. Both consumers and professionals will in general use the
basic bookmark management functionality built into the browser they are using. They are
also likely to use services provided by site categorisation sites such as Yahoo.com or
search engines such as Hotbot.com. The more substantial technology supporting user
modelling, information filtering, mutual recommender functionality, neural nets etc, are
not mature enough to reach the mass market. In order to facilitate this innovation process
we must understand the basic choices for supporting Web navigation, and we must
constantly bear in mind that the customer no longer is the expert computer scientist but
consumers and professionals.

This paper has taken a first small step in this direction by proposing the BASE
framework, which outlines the technological choices for Web navigation support. This is,
however, just a first step, and one that needs to be tested in a setting substantially
different from the laboratory in which it was conceived. To validate the BASE
framework suggested in this paper, we must carefully study how the categories map onto
categories of navigation support elicited from real life information filtering and retrieval
situations. Given the argument we make is based on the perspective of optimising both
installation and use of web navigation support technologies, the next step obviously must
be to relate the framework to a real setting. An obvious first point is to study how the
BASE framework relate to information retrieval situations in knowledge intensive
situations. The framework could also be theoretically strengthened by relating it more
precisely to emergent technologies. As a means of classifying new Web navigation
technologies, important feed-back could be provided regarding the general validity of the
framework.

It is also a future challenge to study how we can employ complex navigation
technology, such as the ones discussed in this paper, in actual work settings.

18

References
Allen, R. B. (1990): User models: theory, method, and practice. International Journal of Man-

machine Studies, vol. 32, no. 5, pp. 511-543.
Balabanovic, M. and Y. Shoham (1997): Fab: Contents-Based, Collaborative Recommendation.

Communications of the ACM, vol. 40, no. 3, pp. 66-72.
Belkin, N. J. and W. B. Croft (1992): Information Filtering and Information Retrieval: Two

Sides of the Same Coin. Communications of the ACM, vol. 35, no. 12, pp. 29-38.
Charles, J. (1998): Open Source: Netscape Pops the Hood. IEEE Software, vol. 15, no. 4, pp. 79-

81.
Darken, R. (1998): Breaking the Mosaic Mold. IEEE Internet Computing, vol. 2, no. 3, pp. 97-

99.
Etzioni, O. (1996): The World-Wide Web: Quagmire or Goldmine? Communications of the

ACM, vol. 39, no. 11, pp. 65-68.
Fagrell, H. and P. Ljungstrand (1998): Make and Agent and You Shall Find. In 21st Information

systems Research seminar In Scandinavian, August 8-11, Sæby Søbad, Denmark, ed. Peter-
Axel Nielsen, Niels Jacob Buch, and Lars Bo Eriksen. Aalborg University, pp. 197–206.

Huhns, M. N. (1999): Networking Embedded Agents. IEEE Internet Computing, vol. 3, no. 1,
pp. 91-93.

Joshi, A. and M. P. Singh (1999): Multiagent Systems on the Net. Communications of the ACM,
vol. 42, no. 3, pp. 39-40.

Krulwich, B. (1997): Automating the Internet: Agents as User Surrogates. IEEE Internet
Computing, vol. 1, no. 5, pp. 34-38.

Lieberman, H. (1995): Letizia: An Agent That Assists Web Browsing. In International Joint
Conference on Artificial Intelligence, August, Montreal.

Lyytinen, K. and S. Goodman (1999): Finland: The Unknown Soldier on the IT Front.
Communications of the ACM, vol. 42, no. 3, pp. 13-17.

Maes, P. (1994): Agents that reduce work and information overload. Communications of the
ACM, vol. 37, no. 7, pp. 31-40.

Maglio, P. P. and R. Barrett (1997): How to Build Modeling Agents to Support Web Searchers.
In User Modelling: Proceedings of the Sixth International Conference, UM97, Vienna, ed.
Anthony Jameson, Cécile Paris, and Carlo Tasso. Springer Verlag, pp. 5-16.

Nielsen, J. (1999): User Interface Directions for the Web. Communications of the ACM, vol. 42,
no. 1, pp. 65–72.

Oard, D. W. (1997): The State of the Art in Text Filtering. User Modeling and User-Adapted
Interaction: An International Journal, vol. 7, no. 3, pp. 141-178.

Schneiderman, B. and P. Maes (1997): Direct manipulation vs Software Agents: Excerpts from
debates at IUI 97 and CHI 97. Interactions, no. November-December, pp. 42-61.

Schubert, C., R. Zarnekow, and W. Brenner (1998): A Methodology for Classifying Intelligent
Software Agents. In ECIS98, Aix-en-Provence, ed. Walter R.J. Bates, vol. I, pp. 304-316.

Sørensen, C. (1998): Where Have You Been Today? Investigating Web Navigation Support. In
21st Information systems Research seminar In Scandinavia, August 8-11, Sæby Søbad,
Denmark,, ed. Peter-Axel Nielsen, Niels Jacob Buch, and Lars Bo Eriksen. Aalborg
University.

Tauscher, L. and S. Greenberg (1997a): How People Revisit Web Pages: Empirical Findings and
Implications for the Design of History Systems. Journal of Human Computer Studies.

Tauscher, L. and S. Greenberg (1997b): Revisitation Patterns in World Wide Web Navigation. In
ACM SIGCHI '97 Proceedings of the Conference on Human Factors in Computing Systems,
Atlanta, Georgia. ACM Press.

Terven, L., W. Hill, B. Amento, D. McDonald, and J. Creter (1997): PHOAKS: A System for
Sharing Recommendations. Communications of the ACM, vol. 40, no. 3, pp. 59-62.

Trowbridge, M. (1999): Y2K Agent. Thesis Computer Science, Aston University.

